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A direct and very efficient approach for obtaining sensitivities of two-point boundary value 
problems solved by Newton’s method is studied. The link between the solution method and 
the sensitivity equations is investigated together with matters of numerical accuracy and 
efficiency. This approach is employed in the analysis of a model three species, unimolecular, 
steady-state, premixed laminar flame. The numerical accuracy of the sensitivities is verified 
and their values are utilized for interpretation of the model results. It is found that parameters 
associated directly with the temperature play a dominant role. The system’s Green’s functions 
relating dependent variables are also controlled strongly by the temperature. In addition, 
flame speed sensitivities are calculated and shown to be a special class of derived sensitivity 
coefficients. Finally, some suggestions for the physical interpretation of sensitivities in model 
analysis are given. (2 1986 Academic Press, Inc. 

I. INTRODUCTION 

Sensitivity analysis is an important numerical tool for the physical investigation 
and validation of mathematical models [l-5]. At the most basic level it deals with 
the probing of the relationship between the output information obtained from a 
model and the input data which includes the model parameters as well as initial 
and boundary values. When the parameters and their variations are constant in 
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space and time the elementary sensitivities are partial derivatives relating the 
independent and dependent variables. By applying Legendre transformations it is 
possible to exchange various independent and dependent variables to calculate 
derived sensitivities [6, 71. The full set of all such quantities can be used to address 
a wide variety of questions about the mathematical modeling of physical processes 
[l-lo]. The importance of the various dependent and independent variables can be 
assessed and the information gained can be used for further model development or 
experimental design. Perhaps the simplest application of sensitivity analysis is as a 
means for estimating inaccuracies in the computed results from mathematical 
models. 

Historically, the major obstacle in obtaining systematically sensitivity infor- 
mation has been the amount of additional computation required for solving the 
sensitivity equations. Without careful forethought, the solution of the sensitivity 
equations could exceed the computational effort used in obtaining the model results 
alone. This can be a serious drawback, especially for models consisting of large 
systems of differential equations. Continuing effort has gone into alleviating these 
problems. For example, in the case of initial value problems, an efficient Green’s 
function technique has been developed and successfully implemented for several 
models [11-131. The purpose of the present work is to develop and demonstrate 
efficient methods to calculate sensitivity coefficients for two-point boundary value 
problems of the form 

$=f(x,y,g;E), a<x<h, 

with the boundary conditions 

(l.la) 

(l.lb) 

(Llc) 

Here f, Y, g,, and g, are N dimensional vectors, generally nonlinear in their 
arguments, and o! is a parameter vector of length M. 

Several authors have suggested that, when a numerical procedure based on New- 
ton’s method is employed to solve (1.1 ), the Jacobian matrix can later be used to 
calculate directly the sensitivity coefhcients [ 14-203. (This suggestion is not restric- 
ted, however, to only boundary value problems.) The present paper examines this 
concept in detail for the case of two-point boundary value problems. We present a 
detailed implementation of the method for a simple but interesting model of a one- 
dimensional flame [21-241. We also show how to take advantage of the infor- 
mation contained in the sensitivity coefficients and the Green’s function matrices to 
interpret the output results of boundary value problems. Although the present 
technique does not obtain sensitivities through the Green’s functions, the latter 
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quantities are still calculated since they contain valuable information about the sen- 
sitivity of the system’s dynamics. 

In the next section we describe the global finite difference procedure used in solv- 
ing the system of equations in (1.1) [25]. In Section III the link between the New- 
ton iteration and the sensitivity coefficients is established. The numerical efficiency 
of the method used to calculate the sensitivity coefficients is then compared to the 
alternative method based upon the Green’s function approach. In addition, a 
detailed analysis is presented on the potential errors in the sensitivity coefficients 
that can result from using numerical Jacobians and inappropriate grid spacings. In 
Section IV the model problem is discussed, the Green’s function matrices are 
calculated and the numerical accuracy of the sensitivity results is verified. In Sec- 
tion V we systematically calculate the sensitivity coefficients for a steady-state reac- 
tion-diffusion model of a premixed laminar flame [21-241. An extensive model 
analysis is performed during which the proper usage of the sensitivity information is 
demonstrated. New physical interpretation for derived sensitivities associated with 
flame speed analysis is presented in Section VI. 

II. METHOD OF SOLUTION 

Many problems of physical interest that can be written in the form of (1.1) can- 
not be solved analytically. As a result, numerical methods are required. Most of the 
numerical methods that have been used in the solution of two-point boundary 
value problems can be classified as either initial value (shooting) type methods 
[26] or global methods such as finite differences or collocation [27,28]. While 
initial value methods tend to be easier to implement than global methods, to use 
them effectively, it is essential that small changes in the initial conditions of the 
resulting initial value problem result in small changes in the initial value solution. 
For problems that do not exhibit this behavior, techniques such as multiple 
shooting [29] and orthonormalization [30] can be used with varying degrees of 
success. We have found, however, that combustion problems such as burner- 
stabilized and freely propagating premixed laminar flames are best solved by global 
methods such as finite differences as opposed to initial value techniques [25]. The 
subsequent sensitivity algorithm is developed under the assumption that the boun- 
dary value problem in ( 1.1) is solved by an adaptive finite difference procedure. 

The first step in this procedure is to obtain a discrete solution of (1.1) on the 
mesh & 

A= {a=x,<x, < ... <x,=6}, (2.1) 

where hj = xj - xi-, , j = 1,2 ,..., m, and h = max , c jG m h,. We approximate spatial 
derivatives in (1.1) using finite difference expressions. Specifically, we write 
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where we define gi = g(x,), j = 0, l,..., m, and 

gj+,,2=(gj+l+g.i) 
? ’ j=O, l,..., m- 1, 
L 

(gj+ L -gj) 
a&+l= h, Y j=O, I,..., m - 1 

/+1 

First derivatives are differenced using the backward difference expressions 

4 
( ) z x, z agj, j = 1, 2 ,..., m. 

(2.3) 

(2.4) 

(2.5) 

Newton’s Method 

By replacing the continuous differential operators in (1.1) by expressions similar 
to those in (2.2)-(2.5), we convert the problem of finding an analytic solution of 
(1.1) to one of finding an approximation to this solution at each point of the mesh 
A. We seek the solution Y,* of the nonlinear system of difference equations 

F(Y,*;a)=O. (2.6) 

For an initial solution estimate r) that is sufficiently “close” to Y,*, the system of 
equations in (2.6) can be solved by Newton’s method. We write 

Yk+‘- Yk= -llkJp’(Yk;a)F(Yk;a), k = 0, l,..., (2.7) 

where Yk denotes the kth solution iterate, & the kth damping parameter 
(0 < 1< I) and J( Yk; a) = aF( Yk; a)/aY the Jacobian matrix. We rewrite (2.7) in the 
form 

J(Yk;a)(Yk+‘- Yk) = -lkF( Yk; a), k = 0, l,..., (2.8) 

where, for the difference approximations considered, a system of linear block 
tridiagonal equations must be solved at each iteration for corrections to the 
previous solution vector. For many problems the cost of forming (either 
analytically or numerically) and factoring the Jacobian matrix can be a significant 
part of the cost of the total calculation. In such problems it is natural to consider 
applying a modified Newton method in which the Jacobian is re-evaluated only 
periodically. The major problem one faces when applying such a method is how to 
determine whether the sequence of successive modified Newton iteration steps is 
converging fast enough. If the rate of convergence is too slow, we return to the full 
Newton method and make use of new Jacobian information. An error estimate that 
determines an upper bound for the size of the sequence of modified Newton correc- 
tions has been derived in [31]. Improvements in cpu times of up to a factor of two 
over the full Newton method have been observed with the use of the estimate. 



NONLINEAR REACTION-DIFFUSION SYSTEMS 31 

Adaptive Gridding 

One of the advantages in using initial value methods in the solution of two-point 
boundary value problems is the adaptive mesh capability of the initial value solver. 
Global finite difference methods, however, require that a mesh be determined a 
priori. Many of the methods that have been used to determine adaptive grids for 
two-point boundary value problems can be interpreted in terms of equidistributing 
a positive weight function over a given interval. We say that a mesh &’ is 
equidistributed on the interval [a, b] with respect to the non-negative function W 
and the constant C if 

l 
-‘, + I 

Wdx= C, j=O, l,..., m- 1. (2.9) 
-9 

The major differences in the approaches used center around the choice of the weight 
function and whether or not the mesh is coupled with the calculation of the depen- 
dent solution components. Of the various approaches used, Pereyra and Sewell 
have equidistributed the local truncation error [32) and White has equidistributed 
the arclength of the solution [33]. We determine the mesh (see [25]) by employing 
a weight function that equidistributes the difference in the components of the dis- 
crete solution and its gradient between adjacent mesh points. A mesh & is sought 
such that 

j=O, l,..., m- 1, i= 1,2 ,..., N 

(2.10) 

and 

(2.11) 

where 6 and y are small numbers less than one and the maximum and minimum 
values of Y, and dY,/dx are obtained from a converged numerical solution on a 
previously determined mesh. To avoid the possibility of producing a mesh that is 
not smoothly varying, the mesh is locally bounded by the relation 

1 h- 
-<d<A, 
A h,-, 

j = 2, 3 ,..., m, (2.12) 

where A is a constant 2 1. 
In employing the adaptive mesh algorithm, we first solve the boundary value 

problem on a coarse mesh (4-5 subintervals) and obtain the maximum and 
minimum values of Yi and dYi/dx. The inequalities in (2.10)-(2.12) are then tested 
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and if any of them is not satisfied, a grid point is inserted at the midpoint of the 
interval in question. Once a new mesh has been obtained, the previously converged 
numerical solution is interpolated onto the new mesh. The problem is solved on the 
new mesh and the process continues until (2.10t(2.12) are satisfied. 

III. SENSITIVITY ANALYSIS 

The goal is now to predict the effect of the variation of the parameter vector a on 
the dependent variable Y. The quantities of interest are the first order sensitivity 
coefficients aY/&,, k = 1, 2,..., M. The appropriate equations for these quantities 
can be derived by differentiating (2.6) with respect to ak. We have 

$(F(Y;u))=gg+g=O, k = 1, 2 ,..., M, 
k k 

(3.1) 

where we have omitted the subscript h and superscript *. Recalling that the 
Jacobian matrix is given by J= aF/aY, we have 

J$= -g, k=l,2 ,..., M. 
k k 

(3.2) 

We remark that, although Eq. (3.2) can be solved at any level of the Newton 
iteration and at any level of grid refinement, we solve it on the finest grid with the 
last Jacobian formed. It is only at this stage of the calculation that the numerical 
solution has been resolved with sufficient accuracy to represent the analytic 
solution. Equations (3.1) and (3.2) can also be arrived at by differentiating (1.1) 
followed by discretization. In principle, the differential equation for aY/&, should 
be discretized on its own mesh independent of that used in solving (2.6). However, 
proceeding with the mesh chosen from (2.6) has an enormous advantage from the 
standpoint of computational efficiency. From another perspective, (3.1) is the exact 
sensitivity equation associated with the discretized approximate result in (2.6). 
Various aspects of error analysis will be explored in more detail below. 

First-Order Sensitivity Coefficients and Green’s Functions 

We point out that although the original boundary value problem can be non- 
linear, the sensitivity equations in (3.2) are linear. In principle, we can apply the 
Green’s function method to obtain a solution to (3.2). While we do not advocate 
such a procedure, the Green’s function does, however, contain valuable information 
on system sensitivity. The Green’s function satisfies the equation 

JG= -A, (3.3) 

where the diagonal matrix A can be written in terms of N x N diagonal blocks a,, 
j= 1, 2,..., m. To insure that the Green’s function vanishes at the boundaries, the 
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diagonal blocks corresponding to j = 1 and j= m are set identically to zero. The 
nonzero diagonal entries of the remaining blocks j = 2, 3,..., m - 1 are given by 

k = 1, 2 ,..., N. (3.4) 

With the definition in (3.4), we can obtain G by solving the linear system 
JG = -A. Assuming the Jacobian has been factored, formation of G is accom- 
plished by performing Nm back substitutions with a different column of A as the 
right-hand side. As a result of the difference approximations used, the Jacobian 
matrix can be written in block tridiagonal form. Its factorization requires 
approximately 7N3m/3 additions and multiplications. To perform a back sub- 
stitution requires approximately 3N2m additions and multiplications. Hence, to 
form G we require 

lN3m 
Number of Operations = 3 + 3N3m2. 

If one actually forms G as described above, the first order sensitivity coefficients can 
be obtained by forming 

g=G-$ k = 1, 2 ,..., M, 
k k 

(3.6) 

at an additional cost of Nm - 1 additions and Nm multiplications. 
In the current application, however, the Jacobian matrix is formed and factored 

into its LU decomposition as a result of the Newton iteration. The first-order sen- 
sitivity coefficients are found by solving (3.2) at a cost of 3N*m additions and mul- 
tiplications per coefficient. 

First-Order Sensitivity Coefficients and Numerical Jacobians 

In practice, the Jacobian matrix in (2.8) is computed numerically. Providing the 
error introduced by forming a numerical approximation to J is not too “large,” 
Newton’s method applied to (2.6) can be shown to converge for a suitably good 
initial guess [34]. For our purposes, we want to investigate the error in the lirst- 
order sensitivity coefficients that is introduced as a result of using an approximation 
to J. The numerical Jacobian J may be written as 

7= J+~J, (3.7) 

where 6J is a perturbation matrix of the analytic Jacobian J. Since we form the 
quantities aF/aa, numerically, we can write 

(3.8) 



34 REUVEN, SMOOKE, AND RABITZ 

where @aF/aa,) is a perturbation of the analytic inhomogeneity aF/&t,. Introduc- 
ing (3.7) and (3.8) into (3.2) produces 

(J+hJ)($+hg.g= -(-g+hE), k=1,2 ,..., M, (3.9) 

where s(aY/aa,) is the perturbation (error) in the kth first-order 
licient. From standard linear perturbation theory, it follows that 

sensitivity coef- 

(3.10) 

for some norm 11. I( and where K(J) = llJj/ IIJ-‘11 is the condition number of the 
Jacobian. If K(J) is large, then small relative perturbations in J and aF/acr, will 
produce large relative perturbations in a Y/da,. In addition, if we let 6 Yj denote the 
perturbation of the jth component of Y, then Taylor series arguments can be used 
to show 

(3.11) 

If we combine (3.11) with (3.10), we see that large relative perturbations in the first- 
order sensitivity coefficients result from: (1) a high condition number of the 
Jacobian and/or (2) large second derivatives of the nonlinear function, and/or (3) 
large perturbations of the dependent solution vector used in evaluating j. 

First-Order Sensitivity Coefficients and Adaptive Grids 

We have concentrated most of our discussion on the determination of the lirst- 
order sensitivities by utilizing the numerical Jacobian on the finest grid. The 
analysis has focused on the discretization of the original equations and the sub- 
sequent solution of the nonlinear difference equations by Newton’s method. The 
process could equally be applied in reverse, as indicated earlier-linearize the 
original equations and then discretize the differential operators. In this section we 
compare the effects of applying each procedure in the calculation of the first-order 
sensitivity coefficients. To facilitate a discussion of these ideas, consider the scalar 
analogue of (1.1) with Dirichlet boundary conditions 

$=f (x3 Y.$g, a<x<b, 

Y(Q) = yI1, 

Y@) =yb, 

(3.12) 
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where o! is a scalar parameter. If we differentiate (3.12) with respect to a and denote 
primes as differentiation with respect to x, we have 

With the definition z = ay/&x we have 

z’~2!L-zf+afz+!z 
-ayl ay a0r’ 

(3.13) 

(3.14) 

which is a linear second-order differential equation for the first order sensitivity 
coefficient. If the differential operators in (3.14) are discretized with expressions 
similar to those in (2.2)-(2.5), then it can be shown that the discrete equations 
obtained are identical to those that result from applying to (3.12) the procedure 
that led to (3.2)-providing the grids used are the same in both calculations. We 
point out that in solving (3.12) we would use an adaptive finite difference 
procedure. This same approach could be used in solving (3.14). In practice due to 
the derivative terms off with respect to y and y’, (3.12) and (3.14) would be solved 
simultaneously. There is no guarantee, however, that the grids used in both 
calculations would be identical. In the solution of (3.14) the location of the grid 
points would be based upon properties of the first-order sensitivity coefficients. The 
grids can differ since the first-order sensitivity coefficients may have regions of high 
spatial activity in regions where the solution y is smooth and vice versa. Two 
questions arise. First, how do the different mesh spacings affect the first-order sen- 
sitivity coefficients and, second, what procedure could be used to guarantee that the 
proper mesh is used even though we determine the sensitivity coeficients from 
(3.2)? 

An analysis of the effect of different mesh spacings based upon general non- 
uniform grids is quite difficult. Instead, we consider the solution of (3.12) and (3.14) 
on uniform grids with a different number of grid points and with first derivatives 
approximated by centered difference expressions. We assume that the solution of 
(3.14) has been obtained to a desired level of accuracy on a grid with mesh spacing 
h. In addition, we assume that the solution of (3.12) has been obtained on a coarser 
grid, with mesh spacing (1 + k) h for an integer k. This situation is analogous to the 
case in which the grid for (3.12) is not as relined as the grid for (3.14) in regions 
where the spatial activity of ay/iTa is high. 

One can show (see [28]) that under appropriate smoothness assumptions, there 
exists a function e(x) independent of the mesh spacing h such that the error in the 
numerical solution of (3.14) has the form 

z(xi) - zi = h2e(xi) + O(h4), 0<j+ 
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where zj is the numerical approximation to dy/& at xi. Similarly, one can show 

q$$=(l +k)*h*e(x,)+o((l +k)4h4), 
h-u 

OqK(, +k)h. (3.16) 

If (3.16) is subtracted from (3.15), then for a point common to both meshes, we find 

2 -z, = k(2 + k) h2e(x,) + O(h4). (3.17) 

We observe that the sensitivity coefficient determined directly from (3.12) is equal 
to the sensitivity coefficient determined from (3.14) plus a correction term that is 
O(h2). The coefficient of this term depends upon the size of the mesh spacing used 
in the coarser grid calculation. 

After obtaining a solution to (3.2), the equidistribution principle (2.10)-(2.12) 
could be applied to the calculated sensitivity coefficients ayylacr,. In this way we can 
determine whether the mesh used in the solution of (1.1) has to be relined to solve 
again for y and 8y/&,. This procedure would be terminated when the calculated 
values of 8y/&, satisfy (2.10)-(2.12). Although such a procedure could add 
significantly to the cost of the original problem, it would assure accurate solutions 
and accurate sensitivity coefficients. In practice, many problems will likely be of the 
type where the sensitivity functions show strong spatial behavior in the same 
regions as that for the original solution. An exception to this “rule” would occur for 
singular perturbation (sensitivity) problems. Extensive numerical calculations on a 
variety of systems will be helpful in finally assessing these issues. 

IV. MODEL SYSTEM 

The computations presented in this section serve the dual purpose of testing some 
of the numerical matters raised in the last section, as well as providing an 
interesting physical example for analysis. A model flame system will be used to 
bring out both issues. Special emphasis will be given to the physical interpretation 
of the sensitivity coefftcients and the Green’s function matrices. A simple, two-stage, 
unimolecular, one-dimensional flame represented by the mechanism 

is chosen as the illustrative model. 
After utilizing the coordinate transformations and nondimensionalizations dis- 

cussed in [21-241, the system can be described, under steady-state conditions, by 
the following nonlinear two-point boundary value problem 

- kricr ew( - E,/T), (4.1) 
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M s- l d2ci 
-+ k,iC, exp( -E,/T) - k,C; exp( -E,/T), 

’ dx Le, dx2 

Mog=f$+ kri(h,- hi) C, exp( -E,/T) +k,h,C,exp( -E,/T), 

on the domain 0 <x < co. The boundary conditions at x = 0 are given by 

C,- 
1 dC ---.-r=E 

M,Le, dx r’ 

1 
ci-- 

dC, 
MoLe,~=Ei’ 

andasx+co by 
T= To, 

dC, dC, dT -=-=-= 
dx dx dx 

0. 

(4.21 

(4.31 

(4.41 

(4.51 

(4.6) 

(4.71 

In practice the solution domain is truncated at a large value of x = L such that the 
zero gradient boundary conditions are “satisfied.” For the calculations presented in 
this section, we set L = 10. 

In the above equations T denotes the temperature and C, and Cj the mass frac- 
tion concentrations of the reactant and intermediate, respectively. The product con- 
centration C, is determined from conservation of mass. We have 

c,= l.O-c,-c;. (4.8 1 

Values for the pre-exponential constants kri, k,, the activation energies E,, E;, the 
Lewis numbers Le,, Le;, the specific enthalpy differences between the reactant and 
product h, and the intermediate and product hi, the mass flux fractions E, and si, 

TABLE I 

Parameters for the Model Flame System 

Parameter Value 

kr, 5.0 x lo* 
k 
; 

1.0 x lo* 
80.0 

E, 10.0 
Le, 0.75 
Le, 1.25 
h, 4.4 
h, 4.5 
E, 1.0 
E, 0.0 
TO 1.25 
MO 0.985 
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the burner temperature TO as well as the initial mixture flow rate M, are listed in 
Table I. Quantities such as the thermal conductivity and the specific heat capacity 
do not appear explicitly in the model because they are contained in the other non- 
dimensionalized variables. 

We point out that asymptotic analyses of this reaction-diffusion system have been 
performed [21-241 and resulting analytical expressions for the flame velocity and 
species concentrations have been obained for several values of activation energies, 
pre-exponential constants and Lewis numbers. Although the three-species model is 
rather schematic and has limited ability to account for the behavior of real complex 
flames, it still contains terms that represent the main processes occurring in larger, 
many-species, reaction-diffusion systems. 

Model Verification 

The system of equations (4.1)(4.8) was solved numerically using the adaptive 
finite difference method described in Section II. Typical solution curves are presen- 
ted in Fig. la. It can be seen that, for the parameter values listed in Table I, the 
concentration of the intermediate remains small along the entire reaction region 
with a peak value an order of magnitude less than the initial value of the reactant. 
Another observation is that, for the nondimensionalized flame speed M,=0.985, 
the flame is practically adiabatic as there are no significant changes in the species 
and the temperature near the burner from their prescribed boundary values. Before 
reaching the other boundary, the reaction is effectively completed and the species 
and the temperature assume their constant steady-state values. 

The nonlinearities in Eqs. (4.1k(4.3) arise only via the exponential temperature 
dependence of the reaction terms. Hence, by enforcing a constant temperature (thus 
replacing Eq. (4.3) with T= r,,,,, , ) the system becomes linear. In such a case an 
analytical solution can be obtained to Eqs. (4.1) and (4.2). Analytical solutions for 

+ -TEMPERATURE 

FIG. 1. Solution of the three species model with predetermined flame speed and k, = 1.0 x 102. (a) 
Variable temperature. (b) the temperature is forced to be constant with T= 3.75 (not shown). The right- 
hand scale refers to the temperature values. 
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a similar model, but without the convective terms, were employed first to test and 
verify the accuracy of the numerical solutions, the sensitivity coefficients and the 
various Green’s function matrices. 

The solution profiles obtained for constant temperature, T= 3.75, are illustrated 
in Fig. lb. All other parameter values are identical to those of the nonlinear 
solution in Fig. la. A system of this type could be achieved effectively by adding a 
large amount of inert diluent in the flow. Appreciable amounts of product appear at 
the burner and the intermediate also peaks very close to it. The flame “region” is 
much larger, and the reaction is not completed at the second boundary. The 
numerical results obtained for the sensitivities in the linear case were in good 
agreement with the sensitivity coefficients obtained analytically from the solution of 
a system of equations similar to (3.14). 

An interesting and somewhat surprising behavior of the sensitivity of the inter- 
mediate with respect to variations in kri in the linearized system can be seen in 
Fig. 2. From Eq. (4.2) it is obvious that the reactant causes an increase in the con- 
centration of the intermediate. This is reflected by a positive sensitivity curve for the 
intermediate in the region where the concentration of the reactant is still large (see 
Fig. lb). However, where the amount of the reactant is reduced considerably 
(x24.5), a further increase in krj causes a large negative response in the inter- 
mediate concentration. At this point in the flow the depletion term in Eq. (4.2) 
becomes dominant and increasing kri just reinforces this effect. The behavior of the 
sensitivity results for the reactant and product are in clear accord with this view. 

Besides serving as a case for easy numerical evaluation, the linear system 
provides useful insight. In particular, the behavior demonstrated by the sensitivity 
coefficients and the Green’s function matrices can reveal whether, under 
appropriate conditions, the nonlinear system or parts of it exhibit behavior that is 
approximately linear. These points of comparison will be examined below. 

[~-REACTANT 
0 -INTERMEDIATE 
X -PRODUCT 

FIG. 2. Normalized first-order sensitivity coefficients with respect to k,, for the solution with con- 
stant temperature. 
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Green’s Function Behavior 

The Green’s function matrices contain global information about the stability of 
the system and its response to various types of perturbations in the entire region of 
interest. Furthermore, of all the possible sensitivities in a problem (besides those 
with respect to laboratory control parameters) the Green’s function elements are 
unique in that they, in principle, can be measured. The Green’s function matrices 
were obtained from a numerical solution of the algebraic equations (3.2) and (3.3) 
using the Jacobian from the last step of the Newton iteration. 

We consider first the linear system at constant temperature. An example is shown 
in Fig. 3 for Gi,(x, x’) which is the response surface of the intermediate at x to a dis- 
turbance of the reactant at x’. It can be seen that the surface is almost structureless 
except for a small positive response along the main diagonal which is the region 
where x is in the proximity of x’. This behavior is typical of a linearly stable system: 
namely, a small and localized response to a perturbation over the entire solution 
region. The positive response is expected in this case since the reactant acts as a 
source for the production of the intermediate (see Eq. (4.2)). Similar behavior was 
observed for the other Green’s function surfaces in the linear case, although the 
response along the diagonal x = x’ is somewhat larger when the same species is per- 
turbed (i.e., consider G,, (x, x’)). The surface for Gri(x, x’) is, of course, zero since 
the reactant is not affected by any other dependent variable in the linear case. 

If we consider the nonlinear flame shown in Fig. la, it is interesting to examine 
first the Green’s function matrices shown in Fig. 4. Comparison with Fig. 3 reveals 
that the stability characteristics of the system are changed dramatically. Generally, 
the response to perturbations becomes larger and they vary significantly in the 
flame region. The magnitude of the response no longer depends on the distance 
from the perturbation point, but on the distance from the flame region. The respon- 
ses are largest in the region where the flame occurs. As a result, the response sur- 
faces are no longer diagonally (x - x’) dominant, but are rather strong functions of 
the response point x and weak functions of the disturbance point x’. Another com- 

FIG. 3. The Green’s function matrix G,,(x, x’) for the solution with constant temperature. The ver- 
tical scale is logarithmic. 
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G, {X,X’) Q,*(X.X’) GJX,X’) 
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FIG. 4. The Green’s function matrices for the variable temperature system with predetermined flame 
speed and k,p = 1.0 x lo*. The subscripts refer to (1) reactant, (2) intermediate, and (3) temperature. The 
vertical scales are logarithmic. 

mon feature of the response surfaces is that their structure is quite similar when 
responses of the same dependent variable are considered-no matter which variable 
is causing the perturbation. 

We point out that the reactant responds negatively to any positive perturbation 
of the dependent variables and the magnitude of the response increases from the 
boundaries towards the center of the flame. The temperature displays generally a 
positive response. Any positive change in the reacting species or in the temperature 
increases the reaction activity of this exothermic system, thereby increasing the tem- 
perature. 

The Green’s function matrices for the intermediate indicate mainly that the shape 
of the intermediate concentration curve will be affected in such a way that its 
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maximum will be shifted closer to the burner if any of the species or the tem- 
perature is increased. This again may be understood in a similar fashion to the dis- 
cussion above. 

V. SENSITIVITY COEFFICIENTS AND ANALYSIS 

The sensitivities (other than the Green’s functions) are presented in this paper as 
normalized quantities 8 In y/a in ak. Here y stands for a dependent variable and ak 
is a specific parameter in the equations or boundary conditions. In this way, relative 
variations are considered and this allows for a comparison between different sen- 
sitivity coefficients. In cases where the nominal value of the parameter is zero, 
seminormalized sensitivities 8 In y/&x, are calculated. The results for the sensitivity 
coefficients are shown in semilogarithmic plots. To handle the plus and minus signs, 
as well as to eliminate the effect of very small sensitivity values on the logarithmic 
scale of the plots, all the normalized sensitivity results of magnitude less than or 
equal to 10d2 were set equal to zero. Thus only sensitivities larger than one percent 
are considered. 

Boundary Condition Sensitivities 

Since the temperature is the quantity through which all the components of the 
nonlinear system are coupled, the characteristics of its behavior have a major role 
in determining the final outcomes. The important feature of the temperature is its 
participation in the exponential terms of the model which results in a dominant 
influence on the kinetics of the flame. The sensitivity coefficients of the temperature 
with respect to the boundary conditions are shown in Fig. 5a. All the sensitivity 
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FK;. 5. Normalized first-order sensitivity coefficients with respect to the boundary values for the 
variable temperature system with predetermined flame speed and k,P = 1.0 x lo*. (a) The sensitivity of 
the temperature with respect to all boundary values. (b) the sensitivities of the species and the tem- 
perature with respect to the boundary value of the temperature at x=0. 
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curves in this figure behave similarly as a function of position and the patterns 
resemble those observed for the temperature Green’s function surfaces (see Fig. 4). 
This may be understood from the behavior of Fig. 4 and the role of G in Eq. (3.6). 
The only difference is in the magnitude of the sensitivities. Two distinct groups can 
be identified among the curves. The one with the larger sensitivity values belongs to 
the boundary conditions at x = 0, whereas the less sensitive curves are for the 
downstream boundary. Note also that the sensitivity coefficients are positive along 
the entire system region. This indicates that increasing the value of any boundary 
condition will cause a positive change in the temperature, especially in the flame 
region. Increasing the species concentrations at the boundaries will enhance the 
reaction activities inside the system region. In addition, since the reaction is 
exothermic, there will be an increase in the temperature. 

Species sensitivity coefficients with respect to the boundary value of the tem- 
perature at x = 0 can be seen in Fig. 5b. Note again that the main structural 
changes in the curves occur in the flame region. It can be seen that an increase in 
the temperature at x = 0 tends to shift the position of the intermediate peak closer 
to the burner. An increase in the temperature results in an increase in the 
magnitude of all the reaction terms in the system. As a result, the reactant concen- 
tration decreases and the intermediate concentration increases in the region in 
which the positive reaction term dominates equation (4.2). This activity will, of 
course, increase the amount of product which is reflected in its positive sensitivity 
profile in Fig. 5b. 

System Parameter Sensitivities 

Sensitivity coefficients for the solution of the nonlinear system with respect to the 
system parameters are presented in Figs. 6-8. Figure 6 illustrates the sensitivity 
coefficients of the temperature with respect to all the parameters and those for the 

FIG. 6. Normalized first-order sensitivity coefficients of the temperature with respect to the system 
parameters for the variable temperature model with predetermined flame speed and k, = 1.0 x 102. 
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intermediate are shown in Fig. 7. Inspection of Fig. 6 reveals that the temperature is 
most sensitive to variations in the specific enthalpies. The resultant variations in the 
temperature are significantly larger in the region of the flame. The increase on the 
temperature when h, is increased results from its appearance in a positive term in 
the energy equation (4.3). Similar variations in hi result in an almost equivalent 
decrease in the temperature. Since hi participates in both a positive term and a 
negative term in the same equation, the above sensitivity behavior implies that the 
contribution from the negative term dominates. 

Comparison between Figs. 6 and 7, along with additional sensitivity results not 
shown here, reveals that the intermediate is relatively more sensitive to variations in 
the specific enthalpies than the temperature, even though these parameters do not 
participate directly in the equation for the intermediate. This is another 
demonstration of the exponential nonlinearity of the temperature. Small variations 
in the temperature are magnified producing large variations in the intermediate. 

The increase in the temperature when kri is perturbed is, at first sight, unexpec- 
ted. The reaction C, + Ci is endothermic according to the values selected for the 
specific enthalpies. However, an increase in kri also results in a decrease of the reac- 
tant concentration (see Eq. (4.1)) which, in turn, causes a decrease in the effect of 
the endothermic term in the temperature equation. In addition, the intermediate 
concentration is increased and, hence, a respective increase is expected in the 
overall exothermicity of the flame system. It appears that the two indirect effects 
described above are more important than the direct effect that kri has on the tem- 
perature. The positive change of the temperature when k, is increased suggests that 
in this case the direct effect has a larger influence than the opposing indirect effect 
of k, through a decrease in the amount of the intermediate. Indeed, in Fig. 7 it is 
clear that these effects can even compete at positions beyond the flame region. 

FIG. 7. Normalized first-order sensitivity coefficients of the intermediate with respect to the system 
parameters for the variable temperature model with predetermined flame speed and k,, = 1.0 x lo*. The 
legend is the same as in Fig. 6. 
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In Fig. 6 and 7 we also observe the contribution of the sensitivities with respect 
to reverse rate constants of the product. The product is essentially the only species 
remaining near the hot boundary and, therefore, its rate terms should be dominant 
in this region. This is reflected by an increased sensitivity to its rate terms (k,,; and 
kpr), although the nominal value of the respective rate constants is zero. 

In Fig. 8 the sensitivities with respect to the rate constant k,; for passage from 
reactant to intermediate are presented. Comparison with Fig. 5b reveals again the 
similar effect that variations of each parameter have on the dependent variables for 
the parameter values selected here. The similarity of the curves in both figures 
shows again that the effect of parameter variations is channeled through the tem- 
perature in the present model. It is interesting to compare Fig. 8 with Fig. 2 which 
presents the same sensitivities for the linear (constant temperature) case. Note the 
smaller values that the sensitivity coefficients assume in the linear system. This 
reflects its increased stability. Another fact that should be mentioned in this context 
is that, although the general patterns of the sensitivity coefficients for the inter- 
mediate look similar, they arise due to different reasons. The sensitivity coefficient 
of k,, in Fig. 2 reflects the direct effect that this rate constant has in the equation for 
the intermediate. In the nonlinear case the same sensitivity coefficient reflects the 
dominant indirect effect that this rate constant has through the temperature on the 
overall rate for the intermediate concentration. This analysis is supported by the 
observation that the sensitivity coefficient in the nonlinear case changes sign at the 
position where the intermediate peaks. The change of sign in the linear case takes 
place in an entirely different position (see also Figs. la and lb). 

The numerical results described so far were obtained for a relatively small rate 
constant for depletion of the intermediate, k, = 1.0 x 102. The value was chosen to 
ensure that a “significant amount” of the intermediate could be accumulated at 

A -TEMPERATURE 

FIG. 8. Normalized first-order sensitivity coeflicients of the system variables with respect to k,, for 
the variable temperature model with predetermined flame speed and k,, = I.0 x IO*. 
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from a parameter to a dependent variable (see also the next section).’ The new 
augmented system of equations can be solved by the method described in Sec- 
tion II. 

In the system under consideration, Eqs. (4.1)-(4.8) were solved with the tem- 
perature constrained at x* = 1.6. The temperature value was taken from the tem- 
perature at x* shown in Fig. la. Solution profiles identical to those displayed in 
Fig. la were obtained and a similar value for the flame speed (M, = 0.98) was 
calculated. The results obtained for the sensitivity coefficients, however, differ con- 
siderably. It is illuminating to see how fixing T* at x* affects the other system sen- 
sitivities. A representative example is shown in Fig. 9 in which the sensitivity coef- 
ficients of the reactant and the intermediate, with respect to k,, are displayed for 
both cases. Note that the two systems show different sensitivities near T* and the 
system with T fixed near x* generally becomes less sensitive in that region. The 
results for the sensitivity coefficients, however, are similar in the flame region and 
near the hot boundary. Fixing the temperature value at an interior point reduces 
the sensitivity of the temperature in the vicinity of that point to parameter 
variations. This causes a respective decrease in the sensitivity of the species. 

Interesting behavior is displayed by the sensitivity coefficient of the intermediate 
with respect to k,p. In the region between the cold boundary and the position at 
which the temperature is prescribed, a positive change in k, now causes a decrease 
in the intermediate concentration. This is the direct effect that we expect k, to have 
on Cj (see Eq. (4.2)). Since the temperature is not sensitive to variations in k, in 
this region, the indirect effect of perturbations in k, through a respective pertur- 
bation in the temperature is negligible. Only when one moves further away from the 
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FIG. 9. Normalized first-order sensitivity coefficients of the reactant and the intermediate with 
respect to k,,, for the variable temperature model and k,,, = 1.0 x 102. (a) Predetermined flame speed, (b) 
augmented system with the additional flame speed equation. 

’ In principle, any other acceptable parameter could have its identification altered but the flame speed 
is special due to its important physical significance. 
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TABLE II 

Elementary and Derived Flame Speed Sensitivities 

a 

kr, 0.23007 
k 
L[ 

0.23826 
0.17810 

Le, 0.09740 
4, - 4.03809 
4 -0.51692 
h, 7.09140 
h, - 3.77922 

0.23039 
0.23859 
0.17832 
0.09755 

-4.04353 
-0.51762 

7.10075 
- 3.78443 

o Evaluated at x* = 1.6 

fixed temperature point does the indirect effect dominate and the sensitivity results 
become similar to those for the case in which the temperature value is not fixed. 

The (elementary) sensitivity values of the flame speed with respect to the system 
parameters are given in Table II (the first column). Of course, since the flame speed 
does not have spatial dependence, its sensitivities are also constant. Similar to the 
sensitivities considered before, the flame speed is affected mainly by variations in 
the activation energies (which appear in the exponential terms of the model) and 
the specific enthalpies (due to the resulting temperature variations). 

An additional demonstration of the different characteristics that arise with the 
fixed temperature point case is apparent from the results of the Green’s function 
matrices presented in Fig. 10. These surfaces should be compared to the Green’s 
surfaces for the original case shown in Fig. 4. We note the marked differences in the 
stability properties of the system in the region around the point at which the tem- 
perature is fixed. These differences are especially pronounced when the temperature 
is perturbed in this region. A response opposite to that shown in Fig. 4 is displayed 
by the species and the temperature. However, when the system is perturbed at a 
point further from the additional boundary point, the stability surfaces of the two 
cases are similar. The only differences occur in the region near the cold boundary 
where the system with the fixed temperature value is more stable. 

VI. DERIVED FLAME SPEED SENSITIVITIES 

In the model considered originally, the flame speed M, appeared as a predeter- 
mined parameter of the system. By prescribing the temperature at an additional 
point x* within the flame region, we were able to treat the flame speed as a depen- 
dent variable and, consequently, the sensitivity of the flame speed to variations of 
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G, 1’xx G,dX,X” G&X,x’) 

FIG. 10. The Green’s function matrices for the variable temperature model with the additional flame 
speed equation and k,,,= 1.0x 102. The subscripts refer to (1) reactant, (2) intermediate, and (3) tem- 
perature. The vertical scales are logarithmic. 

the system parameters was calculated. However, the transformation of the flame 
speed from a parameter to a dependent variable is exactly the process considered by 
derived sensitivities [3, 4, 7, 9, lo]. It has been shown that, when all the elementary 
sensitivities for a specific solution are available, it is possible to interchange a subset 
of dependent variables and parameters by using generalized Legendre transfor- 
mations such that the sensitivities of these parameters with respect to the remaining 
parameters can be obtained. The connection between derived sensitivities and the 
operation of fixing a dependent variable (e.g., the temperature) at some point can 
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Numerical results for sensitivities of the flame speed with respect to several 
parameters obtained via equation (6.3) are presented in Table II (column 2). The 
good agreement between the results for the two sensitivity approaches serves not 
only as a numerical illustration of the mathematical proof in the Appendix, but also 
as an example of the numerical accuracy of the sensitivity results obtained by the 
two solution methods. An important issue concerning flame speed sensitivities is 
their possible dependence on the choice of T* (and x*) as an exchange variable. It 
was found numerically that 8M,/au was not dependent appreciably on these 
choices-provided singular points (e.g., aT(x*)/aM, = 0) were avoided. 

VII. SUMMARY AND CONCLUSIONS 

In this work a direct method for calculating the sensitivity coefficients and the 
Green’s function matrices for boundary value problems was examined. The method 
takes advantage of the fact that the boundary value solver is based on a Newton 
iteration method. The Jacobian required for the Newton formula is, in principle, the 
same one that appears as the operator in the sensitivity equations. Thus the LU fac- 
tored Jacobian used in the final step of the solution procedure can be used 
afterwards to calculate the sensitivity coefficients. As a result, considerable com- 
putational effort can be saved. 

The usefulness of the sensitivity coefficients in the analysis of a model steady-state 
premixed flame based on a system of nonlinear, second-order, differential equations 
was demonstrated. The major physical outcome of the analysis was the prime 
importance of the temperature in determining the sensitivity behavior of the species 
in such a kinetic scheme. A better understanding of derived sensitivities was also 
achieved in this work. We illustrated that the derived sensitivities are, in fact, the 
elementary sensitivities of an augmented system with the relevant parameters as 
dependent variables and an equivalent number of former dependent variables fixed 
at a chosen spatial point. 

We emphasize finally that the overall procedure of the modified Newton method 
plus sensitivity analysis represents a practical and accurate way of solving and 
assessing physically the behavior of nonlinear, coupled, two-point boundary value 
problems. 

APPENDIX 

In this Appendix, we illustrate that the derived sensitivities of a parameter ~1, in 
the boundary value problem (6.1) are equal to the elementary sensitivities for the 
same tli in the boundary value problem (6.2). To simplify the mathematical treat- 
ment, Dirichlet boundary conditions are chosen although the same proof can be 
generalized for more general boundary conditions. 
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A variation in the dependent variable vector as a result of parameter variations 
can be expressed generally as 

dy = S da, (A.1) 

where dy is a differential change in the vector of N dependent variables as a result 
of a differential change da in the vector of M parameters. The quantity S is the 
elementary sensitivities matrix with elements S, = 8yi/iYaj. Suppose that one would 
like to interchange the role of one of the parameters, aI, and one of the dependent 
variables, y, , at some specific position, xX, designated as y:. This leads to the con- 
sideration of a new, derived sensitivity matrix S’. The structure of S’ may be 
obtained by first rewriting Eq. (A.l) in the following manner 

(A.2) 

In the above equation the vector dy’ denotes the dependent variables at all the 
(discrete) positions except y,(x,), the vector da’ represents all the parameters 
besides a,, the term Si is the sensitivity element iYy:/aa,, the matrix S2 is the row of 
sensitivities lly~/iYa’, the matrix S3 is the column of sensitivities 8y’/iTa, and S4 is the 
matrix of sensitivities ay’/tla’. The equation for dy: can be written explicitly from 
Eq. (A.2) as 

dy: = S, da, + S2 da’. (A.3) 

Rearranging, we have 

da, = S;’ dy: - S;-‘S, da’, (A-4) 

where S; l= (iYy~/tYa,)-‘. Similarly, from Eq. (A.2) the equation for dy’ is 

dy’ = S3 da, + S4 da’, (A.5) 

and by substituting in Eq. (A.4) we obtain 

dy’=S3S;‘dyf+(S4-S3S;‘Sz)da’. (A-6) 

From Eqs. (A.3)-(A.6) the equivalent blocks of the derived sensitivity matrix S’ can 
be identified. We have 

s;=s,1, (A.7) 

s; = -S;‘&, (A-8) 

s; = S,S;‘, (A.9) 

s&=sq-s3s;‘s2. (A.lO) 
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We now seek to show that the derived sensitivities coming from Eq. (6.1) are in fact 
the numerical solution to the elementary sensitivities of Eq. (6.2). We next differen- 
tiate (6.1) with respect to an arbitrary element aj of the vector a so that we obtain 
the following system of sensitivity equations 

JY= -aL 
aa, hi’ (A.1 1) 

(A.12) 

Here J is the Jacobian whose elements are J,= aL,/ay,. Similarly, if we write 
a z (al, a’)T as in (A.2) and then differentiate (6.2) with respect to every element ai 
of the vector a’, we obtain 

(A.13) 

(A.14) 

(A.15) 

In Eq. (A.13) the derivative with respect to the additional boundary condition 
ay;/aa; = 0 is included in the vector ay/da;, such that the same Jacobian arises in 
equations (A.llk(A.15). 

The sensitivity equations with respect to the additional boundary condition yi 
are also obtained from Eq. (6.2), 

!!h%+ Jdy=O, 

aa, ad w 
(A.16) 

(A.17) 

(A.18) 

The extra boundary condition ay:/ay: = 1 is included in the vector ay/ay:. To com- 
plete the proof we first recognize that Eqs. (A.9k(A.18) are differential equations. It 
is understood implicitly that they will be solved by a procedure similar to the one 
described in Sections II and III. In this case we recognize that S in Eq. (A.2) is the 
solution of equations (A.ll), (A.12) and we will consider similarly the discretized 
solutions to Eqs. (A.13)(A.18). One can show by appropriate matrix operations 
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and by using Eqs. (A.ll) that the derived sensitivities in Eqs. (A.8) and (A.lO) 
satisfy Eqs. (A.13), (A.14). 

(A.19) 

(A.20) 

The derivatives in equations (A.19t(A.20) are understood to be treated by a dis- 
crete approximation. By applying the boundary conditions from Eq. (A.12) to 
Eq. (A.lO), the boundary conditions in equations (A.14), (A.15) are also satisfied. 
In a similar way, it can be shown that the derived sensitivities (A.7) and (A.9) 
satisfy (A.16), (A.17). We have 

-gs;+Ls;=o, (A.21) 
I 

The boundary conditions in Eq. (A.18) are satisfied by applying Eq. (A.12) to 
Eq. (A.9). This completes the proof. 
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